metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mostafa M. Amini,^a Mohammad Yousefi^b and Seik Weng Ng^c*

^aDepartment of Chemistry, Shahid Beheshti University, Tehran, Iran, ^bDepartment of Chemistry, Science and Research Campus, Islamic Azad University, Tehran, Iran, and ^cInstitute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: h1nswen@umcsd.um.edu.my

Key indicators

Single-crystal X-ray study T = 168 KMean σ (C–C) = 0.013 Å R factor = 0.060 wR factor = 0.155 Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(aquamethyldiphenyltrifluoroacetatotin)-18-crown-6 (1/1)

The *trans*- C_3 SnO₂ trigonal bipyramidal organotin moiety in the centrosymmetric title compound, [Sn(C₂F₃O₂)(CH₃)-(C₆H₅)₂(H₂O)]₂·C₁₂H₂₄O₆, is hydrogen bonded to the polyether moiety [O···O = 2.901 (8) and 2.983 (7) Å] through its coordinated water molecule [Sn-O = 2.483 (5) Å]. Received 8 February 2002 Accepted 15 February 2002 Online 22 February 2002

Comment

Triorganotin(IV) carboxylates commonly exist as either fourcoordinate tetrahedral molecules or five-coordinate carboxylate-bridge polymers (Ng et al., 1988; Tiekink, 1991, 1994). Within the triphenyltin carboxylate class, a small number of compounds have sufficiently enhanced Lewis acidicity that they can form complexes with oxygen-donor ligands (Ng, 1998, 1999; Ng & Kumar Das, 1997). For the strongly electron-withdrawing trifluoroacetate anion in particular, the resulting triphenyltin trifluoroacetate is able to accept water into its coordination sphere, and it has been isolated as an 'outer-sphere coordination' complex with 1,10phenanthroline (Ng et al., 1996). The studies on outer-sphere coordination complexes of hydrated triorganotin carboxylates are now extended to the title mixed alkyldiaryltin analog, methyldiphenyltin trifluoracetate, but with 18-crown-6 as the entity that interacts with the Sn atom through the coordinated water molecule.

The Sn atom in the title compound, (I), is five-coordinate in a *trans*-C₃SnO₂ trigonal-bipyramidal environment. The two organotin entities are located on opposite sides of the crown ether, across a center of symmetry that lies in the middle of the crown ether. The Sn atom lies out of the equatorial plane by 0.168 (1) Å in the direction of the carboxyl O atom [Sn-O = 2.483 (5) Å]; the C1-C6 phenyl ring is tilted by 77.3 (3)° with respect to the equatorial plane, whereas the other phenyl ring, C7-C12, is tilted by 18.4 (3)°. The O-H···O hydrogenbonding interactions involve only four of the six O atoms in the crown ether [O_{water}···O_{crown ether} = 2.901 (7) and 2.983 (7) Å].

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Experimental

Diphenylmethyltin iodide was synthesized from the cleavage of methyltriphenyltin by elemental iodine in low yield. The halide anion was exchanged for the trifluoroacetate ion by treatment with silver trifluoracetate; the synthesis was adapted from that of dimethylphenyltin acetate, which used dimethyldiphenyltin as the starting reagent (Amini et al., 1989). The disproportionation was carried out in methanol under a nitrogen atmosphere. The silver iodide that resulted from the exchange reaction was removed by filtration, and the filtrate was treated with an equimolar (100% excess) quantity of 18-crown-6. The removal of the solvent gave the desired product, which was then purified by recrystallization from ethanol. The compound melts in the 370-376 K range. The formulation was established by satisfactory ¹H NMR integral analysis. The water signal appeared as a broad peak at $\delta = 4.1$ p.p.m.; ${}^{2}J(\text{Sn}-\text{H}) = 70$ Hz in CDCl₃; ¹⁹F NMR = 75.6 p.p.m. The IR spectrum (KBr disk) showed peaks at 3400 (H₂O), 1703, 1638 (CO) 542, 520 (Sn-C) cm⁻¹.

Crystal data

$[Sn(C_2F_3O_2)(CH_3)(C_6H_5)_{2^-}(H_2O)]_2 \cdot C_{12}H_{24}O_6$	Z = 1
$M_r = 1102.23$	$D_x = 1.535 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo K α radiation
a = 9.3175 (9) Å	Cell parameters from 4178
b = 12.0263 (11) Å	reflections
c = 12.1632 (12) Å	$\theta = 1.8-26.5^{\circ}$
$\alpha = 106.156$ (1)°	$\mu = 1.13 \text{ mm}^{-1}$
$\beta = 101.177$ (1)°	T = 168 (2) K
$\gamma = 107.211$ (1)°	Plate, colorless
V = 1192.5 (2) Å ³	$0.30 \times 0.15 \times 0.05 \text{ mm}$
Data collection Siemens CCD area-detector diffractometer ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.729, T_{max} = 0.946$ 13839 measured reflections	4135 independent reflections 3066 reflections with $I > 2\sigma(I)$ $R_{int} = 0.098$ $\theta_{max} = 25.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 14$ $l = -14 \rightarrow 14$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.060$	$w = 1/[\sigma^2 (F_o^2) + (0.0872P)^2]$
$vR(F^2) = 0.155$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
135 reflections	$\Delta \rho_{\rm max} = 1.55 \text{ e} \text{ \AA}^{-3}$
81 parameters	$\Delta \rho_{\rm min} = -1.32 \text{ e } \text{\AA}^{-3}$

Table 1

2

Selected	geometric	parameters	(Å, °)
	8		(,	

Sn1-C1	2.158 (8)	Sn1-O1	2.193 (5)
Sn1-C7	2.149 (7)	Sn1-O1w	2.483 (5)
Sn1-C13	2.135 (8)		
C1-Sn1-C7	115.0 (3)	C7-Sn1-O1	97.4 (2)
C1-Sn1-C13	118.8 (3)	C7-Sn1-O1w	82.9 (2)
C1-Sn1-O1	91.2 (3)	C13-Sn1-O1	94.6 (3)
C1-Sn1-O1w	88.4 (2)	C13-Sn1-O1w	85.5 (3)
C7-Sn1-C13	124.4 (3)	O1-Sn1-O1w	179.6 (2)

Although the diffraction intensities were measured beyond θ = 25°, those above this limit were too weak to be of use in the refinement. The water H atoms were placed in calculated positions and refined with a riding model and with $U_{iso} = 0.05 \text{ Å}^2$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank Dr Jan Wikaira of the University of Canterbury, New Zealand, for the diffraction measurements, and the University of Malaya (F0758/2001A) for supporting this work.

References

- Amini, M. M., Ng, S. W., Fidelis, K. A., Heeg, M. J., Muchmore, C. R., van der Helm, D. & Zuckerman, J. J. (1989). J. Organomet. Chem. 365, 103–110.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Ng, S. W. (1998). Acta Cryst. C54, 745–750.
- Ng, S. W. (1999). Acta Cryst. C55, 523-531.
- Ng, S. W., Chen, W. & Kumar Das, V. G. (1988). J. Organomet. Chem. 345, 59–64.
- Ng, S. W. & Kumar Das, V. G. (1997). Trends Organomet. Chem. 2, 107–115. Ng, S. W., Kumar Das, V. G. & Kennard, C. H. L. (1996). Main Group Met.
- Chem. 19, 107–110.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens. (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.
- Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.